

FEUP Main Auditorium

May 29 o 14h00

_0

0

0

0

0

 \bigcirc

0

0

Artificial intelligence in the energy sector: hype, hallelujah or outdated?

Ricardo Bessa, rbessa@inesctec.pt

Energy Systems of the Future

Porto, 29th May 2019

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

The Hype of Artificial Intelligence

Percent of applicants

Percent of respondents

Is AI Outdated in the Energy Sector?

Recent Research and Technical Breakthroughs

Deep Learning

Breakthrough in **computer vision** (detecting objects, understanding actions) and in **learning goal-oriented behavior** (reinforcement learning)

AI Hardware

Semiconductor performance is a key driver behind progress in AI applications. Graphics processing units (GPU) mean **fast training** and model iteration

Neuroscience

Better understanding of biological brains inspired new concepts for AI: episodic and working memory, attention, continual learning, imagination, etc.

Transfer Learning

Knowledge acquired by a trained model can be re-applied during the training process for a new task. **Reduces the amount of data needs**

Automated AI

Automatically discovers the best model architecture for a specific task (**reduces human craft**)

Selection of AI Use Cases @ Energy Sector

Drivers of AI impact

Increase decision confidence & find complex solutions

4 Not enough meaning

Find patterns in sparse data & simplify information & imagine future scenarios

Too much information

Reduce cognitive load of humans & exploit memory from repeated situations

High uncertainty

3

"Process" and communicate uncertainty information without increasing stress levels

High complexity

5

Handle cases where the modelling of the physical system is complex and/or expensive

Selection of AI Use Cases @ Energy Sector

Examples (non-exhaustive!)

2 Need to act fast

 Remedial actions for transmission and distribution grids
Resilience to extreme

weather events

Not enough meaning

Asset condition monitoring and forecasting

Electricity market data analysis

Too much information

- Alarm management in substations
- Cascading failure

High uncertainty

3

Trading RES in the electricity market

Operational planning of power systems

High complexity

5

 Energy optimization of industrial processes
Distributed control in VPP, DER and grids

partially inspired by "Cognitive Bias Codex", Buster Benson and John Manoogian III

Use Case: Energy Optimization in Wastewater Station

Al Value Proposition

Avoid modelling the wastewater system AND explores data already available from the SCADA

CSS Integrid

Minimize electrical energy consumption

- Predictive control of variable-frequency pumps
- Anticipate periods of high wastewater intake
- Include different levels of wear and tear of the pumps
- Be easily implemented and it is scalable to other systems

Use Case: Energy Optimization in Wastewater Station

Predictive approach

("imagining" and acting based on future states)

Energy Savings with Al

Reduce energy consumption by 15 - 30%

Use Case: Electricity Market Data

AI Value Proposition

Predict competitors bidding behavior AND improve market offers with this valuable information

2

Predict residual demand curves

- Predict residual demand curves for the 24 hours of day D+1
- Use biologically-inspired models, i.e. convolutional layers and memory networks
- Exploit the capacity of deep learning in handling frames/images

Use Case: Electricity Market Data

Use Case: Reduce Cognitive Load in Substations Alarms

Al Value Proposition

Reduce cognitive load of human operators AND provide fast decision-aid

Minimize time-to-first-action

- Analyze the ultra-fast (milliseconds) sequence of alarms
- Detect and classify patterns of events
- Solve issues that cannot be handled automatically
- Knowledge capitalization on operator's historical decisions

Figure reference: Kirschen, D. S., Wollenberg, B. F. (1992). Intelligent alarm processing in power systems. Proceedings of the IEEE, 80(5), 663-672

Figure based on: Zuo, S., et al. (2017). Continuous reinforcement learning from human demonstrations with integrated experience replay for autonomous driving. 2017 IEEE International Conference on Robotics and Biomimetics.

Some Predictions and Impacts

Al-based methods will become "more" explainable

Hybridization between data and physical models

Attractive business cases in asset and grid management, electricity markets

Paradigm shift towards distributed intelligence

Humans will remain a core building block in Al @energy sector Broader adoption by decision-makers and industry

Fast deployment of AI & Embedded expert knowledge

De-risk investment in AI and R&D from academia

Reduce big data requirements & New business models

Improved human decisions & lower levels of stress

